Space time : special relativity..

"Light is time at maximum compression and matter is space at maximum compression (proton as a mini black hole)."

Special Relativity:

Physics at the end of the nineteenth century found itself in crisis: there were perfectly good theories of mechanics (Newton) and electromagnetism (Maxwell), but they did not seem to agree. Light was known to be an electromagnetic phenomenon, but it did not obey the same laws of mechanics as matter. Experiments by Albert A. Michelson (1852-1931) and others in the 1880s showed that it always traveled with the same velocity, regardless of the speed of its source. Older physicists struggled with this contradiction in various ways. 
In 1892 George F. FitzGerald (1851-1901) and Hendrik A. Lorentz (1853-1928) independently found that they could reconcile theory and experiment if they postulated that the detector apparatus was changing its size and shape in a characteristic way that depended on its state of motion. In 1898, J. Henri PoincarΓ© (1854-1912) suggested that intervals of time, as well as length, might be observer-dependent, and he even speculated (in 1904) that the speed of light might be an "unsurpassable limit".

Einstein in 1905:



None of these eminent physicists, however, put the whole story together. That was left to the young Albert Einstein (1879-1955), who already began approaching the problem in a new way at the age of sixteen (1895-6) when he wondered what it would be like to travel along with a light ray. By 1905 he had shown that FitzGerald and Lorentz's results followed from one simple but radical assumption: the laws of physics and the speed of light must be the same for all uniformly moving observers, regardless of their state of relative motion. For this to be true, space and time can no longer be independent. Rather, they are "converted" into each other in such a way as to keep the speed of light constant for all observers. (This is why moving objects appear to shrink, as suspected by FitzGerald and Lorentz, and why moving observers may measure time differently, as speculated by PoincarΓ©.) Space and time are relative (i.e., they depend on the motion of the observer who measures them) — and light is more fundamental than either. This is the basis of Einstein's theory of special relativity ("special" refers to the restriction to uniform motion).

Comments

Popular posts from this blog

"πš„π™½πš‚π™Ώπ™Ύπ™Ίπ™΄π™½ πš†π™Ύπšπ™³πš‚"